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VIRTUAL ASSISTANTS

ARE ON THE RISE
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TEACH AI YOURSELF
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NOTHING IS MORE NATURAL

THAN NATURAL LANGUAGE
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NATURAL LANGUAGE IS

HARD TO UNDERSTAND
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LEARNING HOW LAYPERSONS TEACH NEW 

FUNCTIONS TO INTELLIGENT SYSTEMS
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Task Definition

Classification of natural language teaching efforts
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2     extract the semantic structure

1     is a teaching effort or not and 

Given a description, we aim to classify whether it…  

The results will later be used to synthesize code!
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Basic Approach – Hierarchical Classification
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binary

ternary
Teaching

MISC DECL SPEC

Teaching Intent

Semantic Structure
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Classification – Examples 

Teaching effort (binary):

• descriptions contains an explicitly stated 

teaching intent – class Teaching

• it’s merely a sequence of action

– class Non-Teaching

Roger that! Learning How Laypersons Teach New Functions to Intelligent Systems | Sebastian Weigelt, Vanessa Steurer, Tobias Hey, and Walter F. Tichy21.02.20209

hey Robo preparing a cup of coffee means you have to put a coffee mug under the dispenser 

and then press the red button on the coffee machine that’s how you make some coffee

collect cutlery from cupboard, bring them to the table and place down neatly

Non-Teaching

Teaching

Semantic structure (ternary):

Phrases of teaching efforts either…

• declare the new function (wish for extension and a 

name), or…

• specify the intermediate steps of the 

function to be learned, or…

• have miscellaneous content 

(irrelevant in our context)
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Dataset

Source: online user study [1]

Task: teach a robot a skill using

nothing but natural language

Setting: humanoid robot in a kitchen

Scenarios: greeting someone

preparing coffee

serving drinks

setting a table for two

Roger that! Learning How Laypersons Teach New Functions to Intelligent Systems | Sebastian Weigelt, Vanessa Steurer, Tobias Hey, and Walter F. Tichy21.02.202010

http://dx.doi.org/10.21227/zecn-6c61

Dataset

870

3168

Labels

Words

NumbersOverview
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Interested?

Attend my talk on Wednesday!

Resource Track – Paper 1: 

At Your Command!

An Empirical Study on How Laypersons Teach Robots New Functions.
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Approach – Breakdown

4    Adaptations
Roger that! Learning How Laypersons Teach New Functions to Intelligent Systems | Sebastian Weigelt, Vanessa Steurer, Tobias Hey, and Walter F. Tichy21.02.202012

2    First-level Classification

3    Second-level Classification

1    Generation of Training Instances
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Approach – Generation of Training Instances

Three consecutive Steps[2]
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Approach – First-Level Classification: Overview
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Training            Val.       Test

80                         20

80                 20

Random

Scenario-

based

Training

Test

Data Split

Classifier

Neural Networks

Classic

Task: is there teaching intent or not? 

Challenge

Teaching

Sequence-To-Single-Label

“You have to place the cup under the dispenser 

and press the red button to make coffee.”

teaching intent often 

stated implicitly
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Approach – First-Level Classification: Classic Techniques
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Decision Tree

Random Forest

Support Vector Machines

Naı̈ve Bayes

Logistic Regression

Baseline (Most Frequent Label)
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Approach – First-Level Classification: Classic Techniques
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Random

Decision Tree (.893) .903

Random Forest (.917) .909

Support Vector Machines (.848) .861

Naı̈ve Bayes (.771) .801

Logistic Regression (.927) .947

Baseline (Most Frequent Label) .573

• good results on the randomly split data (Decision Tree, Random Forest)
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Approach – First-Level Classification: Classic Techniques
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Random Scenario

Decision Tree (.893) .903 (.861) .719

Random Forest (.917) .909 (.893) .374

Support Vector Machines (.848) .861 (.870) .426

Naı̈ve Bayes (.771) .801 (.765) .300

Logistic Regression (.927) .947 (.891) .719

Baseline (Most Frequent Label) .573 .547

• good results on the randomly split data (Decision Tree, Random Forest)

• dramatic decline on scenario split data (esp. Random Forest, SVM, and Naı̈ve Bayes)

• best: Logistic Regression

• overall: insufficient for this task

→ need more advanced approaches

-.535
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Approach – First-Level Classification: Neural Networks

Roger that! Learning How Laypersons Teach New Functions to Intelligent Systems | Sebastian Weigelt, Vanessa Steurer, Tobias Hey, and Walter F. Tichy21.02.202020

input

layer

embedding

layer

basic

architecture

additional

layers

output

layer

fastText

Dense, Dropout, 

Convolutional, 

MaxPooling, …

Feedforward, Convolutional, GRU, LSTM, ...



21 21.02.2020

Approach – First-Level Classification: Neural Networks
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Name Configuration

ANN1 Flat, D(100)

ANN2 GMax, D(100)

CNN1 Conv(128, 5), Max(2), Conv(128, 5), GMax, D(10)

RNN1 GRU(128), D(100)

RNN2 BiGRU(32), DO(0.2), D(64), DO(0.2)

RNN3 LSTM(128), D(100)

RNN4 BiLSTM(128), D(64)

RNN5 BiLSTM(128), D(100), DO(0.3), D(50)

Baseline (Logistic Regression)

additional layers
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Approach – First-Level Classification: Neural Networks
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Name Configuration Random

self-trained fastText

ANN1 Flat, D(100) (.916) .914 (.846) .867

ANN2 GMax, D(100) (.899) .896 (.879) .896

CNN1 Conv(128, 5), Max(2), Conv(128, 5), GMax, D(10) (.952) .964 (.954) .966

RNN1 GRU(128), D(100) (.562) .625 (.562) .625

RNN2 BiGRU(32), DO(0.2), D(64), DO(0.2) (.947) .944 (.952) .959

RNN3 LSTM(128), D(100) (.562) .625 (.562) .625

RNN4 BiLSTM(128), D(64) (.951) .955 (.956) .959

RNN5 BiLSTM(128), D(100), DO(0.3), D(50) (.936) .937 (.945) .941

Baseline (Logistic Regression) (.927) .947

additional layers
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Approach – First-Level Classification: Neural Networks

• promising results (> .93 accuracy) for both data splits

• best: CNN1 (random split) and RNN2 (scenario split)
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Name Configuration Random Scenario

self-trained fastText self-trained fastText

ANN1 Flat, D(100) (.916) .914 (.846) .867 (.905) .781 (.874) .715

ANN2 GMax, D(100) (.899) .896 (.879) .896 (.893) .668 (.918) .674

CNN1 Conv(128, 5), Max(2), Conv(128, 5), GMax, D(10) (.952) .964 (.954) .966 (.973) .862 (.977) .862

RNN1 GRU(128), D(100) (.562) .625 (.562) .625 (.519) .702 (.519) .702

RNN2 BiGRU(32), DO(0.2), D(64), DO(0.2) (.947) .944 (.952) .959 (.954) .911 (.958) .932

RNN3 LSTM(128), D(100) (.562) .625 (.562) .625 (.519) .702 (.519) .702

RNN4 BiLSTM(128), D(64) (.951) .955 (.956) .959 (.960) .927 (.962) .919

RNN5 BiLSTM(128), D(100), DO(0.3), D(50) (.936) .937 (.945) .941 (.937) .922 (.954) .917

Baseline (Logistic Regression) (.927) .947 (.891) .719

additional layers
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Approach – Second-Level Classification: Overview
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Training            Val.       Test

80                         20

80                 20

Random

Scenario-

based

Training

Test

Data Split

Classifier

Neural Networks

Task: extract the semantic structure! 

Challenge

Sequence-To-Sequence

“hey robo look into the persons eyes to greet a 

person wave your robot hand and say hello this 

is how you greet someone that’s it”

non-continuous semantic parts 

and varying structure

MISC SPECDECL DECL SPECSPEC DECL
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Approach – Second Level Classification (2)
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Name Configuration Random Scenario

self-trained fastText self-trained fastText

ANN1 D(100) (.853) .856 (.853) .848 (.851) .822 (.851) .827

RNN1 LSTM(128) (.974) .976 (.978) .977 (.973) .960 (.973) .964

RNN2 LSTM(128), D(64) (.973) .972 (.977) .976 (.970) .955 (.971) .963

RNN3 BiLSTM(128) (.986) .983 (.987) .985 (.983) .960 (.981) .976

RNN4 BiGRU(128) (.984) .984 (.985) .985 (.976) .955 (.982) .968

RNN5 BiLSTM(128), D(100), DO(0.3), D(50) (.982) .982 (.982) .985 (.978) .955 (.981) .968

RNN6 BiLSTM(128), DO(0.2) (.985) .984 (.988) .988 (.982) .958 (.981) .975

RNN7 BiLSTM(256), DO(0.2) (.986) .984 (.987) .985 (.982) .964 (.982) .975

Baseline (Most Frequent Label) .759 .757

• very promising results (> .97 accuracy) on scenario split with fastText (most realistic setting)

• best: “any” BiLSTM
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DECL

Approach – Adaptations
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Smoothing

Overruling

MISC SPECDECL DECL SPECSPEC DECL

Non-TeachingTeaching
Approach:
1. set separating value of 1st-level classifier to .1

2. apply 2nd-level classification to all instances

3. 1st-level: [0.01,0.1) && 2nd-level: two DECL

→ TEACHING

Improvement: .8%

MISC SPECDECL DECL SPECSPEC DECL

Approach:
1. apply a semantic role labeler (SRL)

2. smooth 2nd-level classification (align to roles)

3. majority decision!

V A1 A2A0

Improvement: tbd
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Related Work
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PNL
Robotics

Dictation
[3, 4, 5, 6]

Naturalizing
[7]

Syntactic
[8, 9, 10]

Interactive
[11]

Semantic Parsing
[12, 13, 14, 15]

[16, 17, 18]
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Conclusion

Approach: Hierarchical Classification

1. teaching intent

2. semantic structure

Results: Best classifier accuracies

• 1st-level – BiGRU: .932

• 2nd-level – BiLSTM: .976

Adaptations: Heuristics

• Overruling: 2nd classifier may overrule 1st

• Smoothing: align 2nd-level labels with SRL tags

Roger that! Learning How Laypersons Teach New Functions to Intelligent Systems | Sebastian Weigelt, Vanessa Steurer, Tobias Hey, and Walter F. Tichy21.02.202028

binary

ternary
Teaching

MISC DECL SPEC

Objective: Classification of natural

language teaching efforts
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„hey robo

check if the

dish is dirty

then wash the

dish twice after 

that get me

orange juice

while reading… 

the news for

me“

Future Work – A Short Teaser
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Appendix – NN Configurations
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