

Roger that! Learning How Laypersons Teach New Functions to Intelligent Systems

Sebastian Weigelt, Vanessa Steurer, Tobias Hey, and Walter F. Tichy

KIT – Department of Informatics – Institute for Program Structures and Data Organization (IPD).

VIRTUAL ASSISTANTS ARE ON THE RISE

TEACH ALYOURSELF

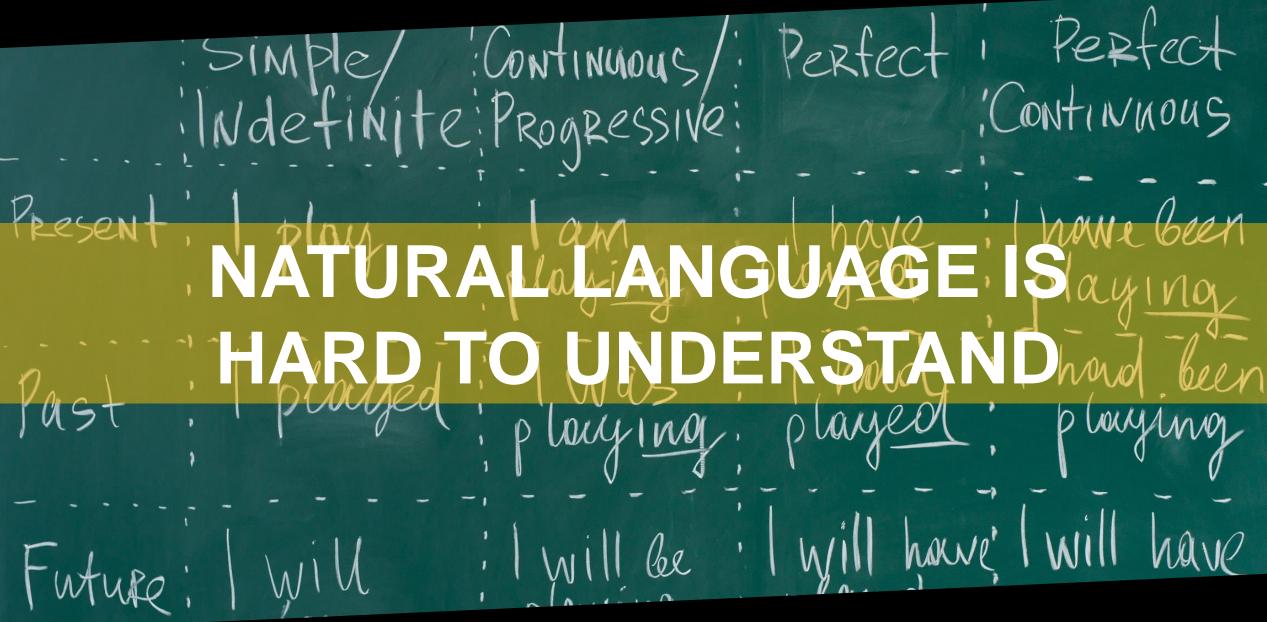
NOTHING IS MORE NATURAL THAN NATURAL LANGUAGE

4x-2y.14-

h2-40.14

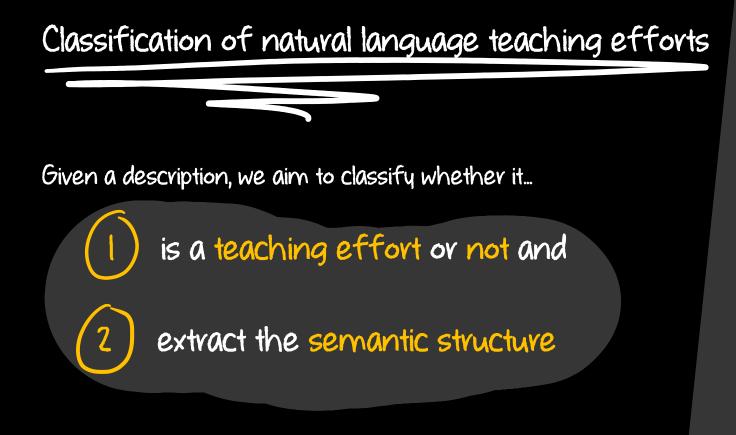
2 X. T4

6g 2

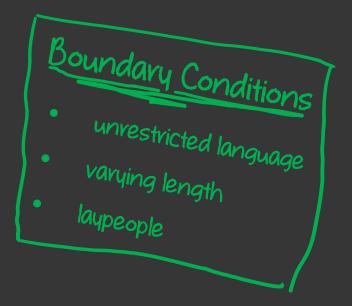


 $V_n \in N$, to $\frac{\{x_n\}}{\int_U \frac{1}{2} df\}} = \int \frac{x_n}{y_n}$, $x + \frac{3n-4}{n^2-2n+x} \int x_n \frac{2lim}{n \to \infty} \frac{n^2-x}{3}$ fraicr E lim 1+ I yn f + 0 <=> yn + 0 By $\int \lim_{n \to \infty} \int A = 1$ {yn df yn InEN, A>0,=>/ N→R x:p $\frac{\sqrt{|4^{n} + \cos 2n|}}{n^{2} + 2n + 3} \left(\frac{n^{2} + n - 1}{n^{2} - 2n + 3} \right) \quad \forall n \in N \times n \in \mathcal{Y}_{n} < Z_{n};$ PERSO min min 114. 13n $\mathfrak{A}_{n}: \mathcal{N} \rightarrow \mathcal{R}$ R n 4"+ $\{x_n\} \cdot \{y_n\} = \{x_n + y_n\}; 13$ n+1 $x_n \leq y_n \leq z_n$ $(n \rightarrow \infty) \{x_n\} \cdot \{y_n\}_{df} = \{x_n, y_n\}; 13$ €[0,1), ↓ N → ∞

Task Definition

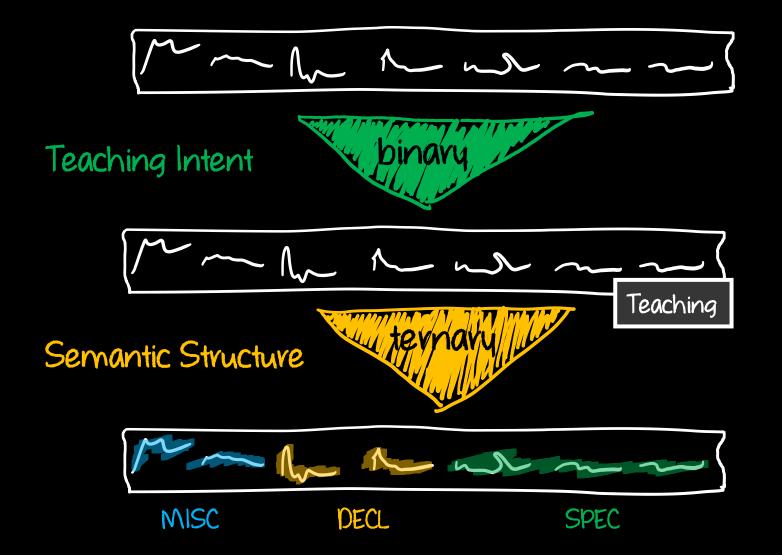


The results will later be used to synthesize code!



7 21.02.2020 Roger that! Learning How Laypersons Teach New Functions to Intelligent Systems | Sebastian Weigelt, Vanessa Steurer, Tobias Hey, and Walter F. Tichy

Basic Approach – Hierarchical Classification



8 21.02.2020 Roger that! Learning How Laypersons Teach New Functions to Intelligent Systems | Sebastian Weigelt, Vanessa Steurer, Tobias Hey, and Walter F. Tichy

Classification – Examples

hey Robo preparing a cup of coffee means you have to put a coffee mug under the dispenser and then press the red button on the coffee machine that's how you make some coffee

Teaching

collect cutlery from cupboard, bring them to the table and place down neatly

Non-Teaching

Teaching effort (binary):

- descriptions contains an explicitly stated teaching intent – class Teaching
- it's merely a sequence of action
 class Non-Teaching

Semantic structure (ternary):

Phrases of teaching efforts either...

- declare the new function (wish for extension and a name), or...
- specify the intermediate steps of the function to be learned, or...
- have miscellaneous content (irrelevant in our context)

Dataset

Numbers Labels Source: online user study [1] amount share Teaching binary 1998 Non-Teaching .63 1170 Task: teach a vobot a skill using Total .37 3168 Declaration 1.00 nothing but natural language ternary 15559 Specification .21 57156 Miscellaneous .76 2219 Total .03 3168 Setting: humanoid vobot in a Kitchen 74934 1.00 Scenarios: greeting someone Words preparing coffee min. max. mean quantiles st. dev. 1.0Dataset 312 .990 35.43 .995 22.48 .999 117135232

serving drinks setting a table for two

10 21.02.2020

Interested?

Attend my talk on Wednesday!

Resource Track – Paper 1: At Your Command!

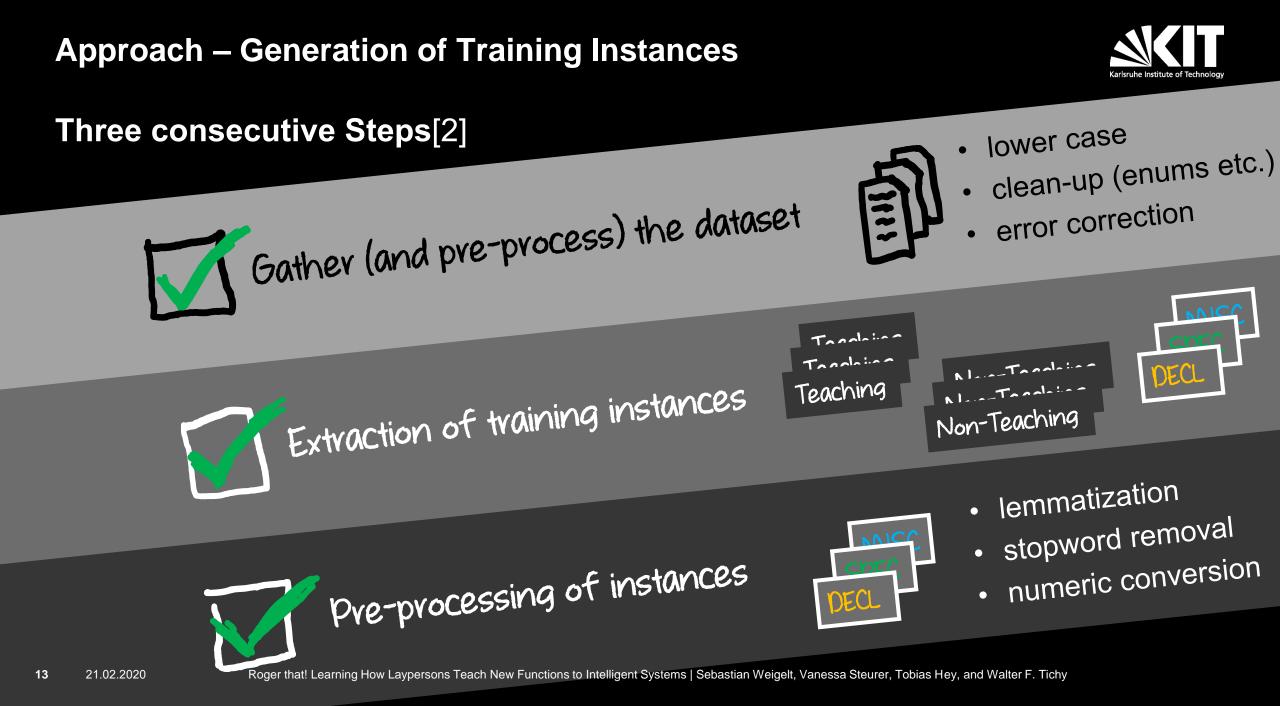
An Empirical Study on How Laypersons Teach Robots New Functions.

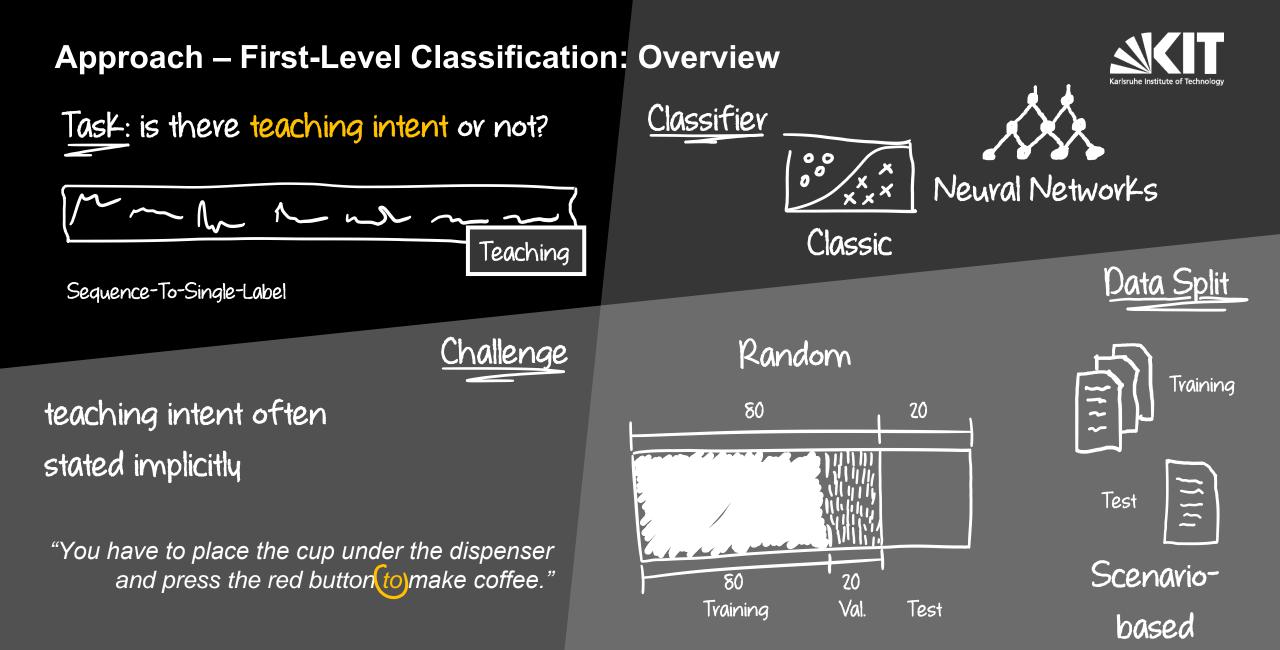
Approach – Breakdown

() Generation of Training Instances

2) First-level Classification

(4) Adaptations





Decision Tree

Random Forest

Support Vector Machines

Naïve Bayes

Logistic Regression

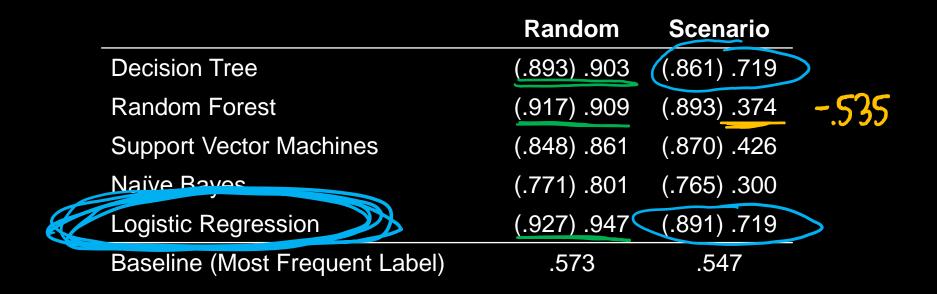
Baseline (Most Frequent Label)

Approach – First-Level Classification: Classic Techniques

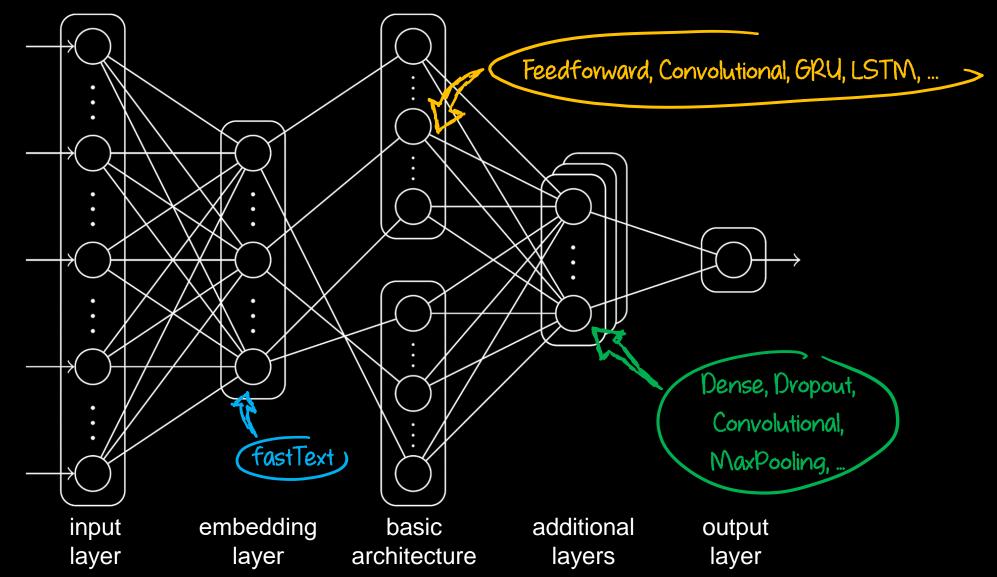
	Random		
Decision Tree	(.893) .903		
Random Forest	(.917) .909		
Support Vector Machines	(.848) .861		
Naive Bayes	(.771) .801		
Logistic Regression	<u>(.927) .947</u>		
Baseline (Most Frequent Label)	.573		

• good results on the randomly split data (Decision Tree, Random Forest)

Approach – First-Level Classification: Classic Techniques



- good results on the randomly split data (Decision Tree, Random Forest)
- dramatic decline on scenario split data (esp. Random Forest, SVM, and Naive Bayes)
- best: Logistic Regression
- overall: insufficient for this task
 - \rightarrow need more advanced approaches



20 21.02.2020

Roger that! Learning How Laypersons Teach New Functions to Intelligent Systems | Sebastian Weigelt, Vanessa Steurer, Tobias Hey, and Walter F. Tichy

Name Configuration

- ANN1 Flat, D(100)
- ANN2 GMax, D(100)
- CNN1 Conv(128, 5), Max(2), Conv(128, 5), GMax, D(10)
- RNN1 GRU(128), D(100)
- RNN2 BiGRU(32) DO(0.2), D(64), DO(0.2)
- RNN3 LSTM(128), D(100) ~ additional layers
- RNN4 BiLSTM(128), D(64)
- RNN5 BiLSTM(128), D(100), DO(0.3), D(50)
- Baseline (Logistic Regression)

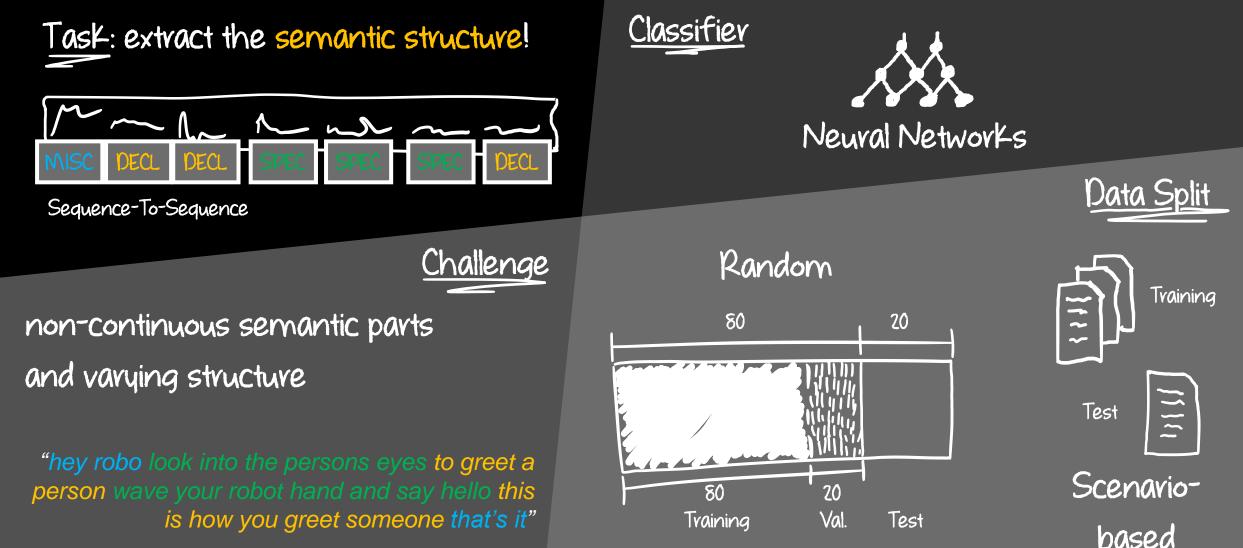
Name	Configuration	Random		
		self-trained	fastText	
ANN1	Flat, D(100)	(.916) .914	(.846) .867	
ANN2	GMax, D(100)	(.899) .896	(.879) .896	
CNN1	Conv(128, 5), Max(2), Conv(128, 5), GMax, D(10)	(.952) .964	(.954) .966	
RNN1	GRU(128), D(100)	(.562) .625	(.562) .625	
RNN2	BiGRU(32), DO(0.2), D(64), DO(0.2)	(.947) .944	(.952) .959	
RNN3	LSTM(128), D(100) ~additional layers	(.562) .625	(.562) .625	
RNN4	BiLSTM(128), D(64)	(.951) .955	(.956) .959	
RNN5	BiLSTM(128), D(100), DO(0.3), D(50)	(.936) .937	(.945) .941	
Baselin	e (Logistic Regression)	(.927) .947		

	Name	Configuration	Random		Scenario	
			self-trained	fastText	self-trained	fastText
	ANN1	Flat, D(100)	(.916) .914	(.846) .867	(.905) .781 (.	874) .715
	ANN2	GMax, D(100)	(.899) .896	(.879) .896	(.893) .668 🌔	918) .674
V	CNN1	Conv(128, 5), Max(2), Conv(128, 5), GMax, D(10)	(.952) .964	(.954) .966	(.973) .862 (.	977) .862
×	RNN1	GRU(128), D(100)	(.562) .625	(.562) .625	(.519) .702	519) .702
	RNN2	BiGRU(32), DO(0.2), D(64), DO(0.2)	(.947) .944	(.952) .959	(.954) .911 🔃	958) .932
Å	RNN3	LSTM(128), D(100) ~ additional layers	(.562) .625	(.562) .625	(.519) .702 👖	519) .702
	RNN4	BiLSTM(128), D(64)	(.951) .955	(.956) .959	(.960) .927	962) .919
	RNN5	BiLSTM(128), D(100), DO(0.3), D(50)	(.936) .937	(.945) .941	(.937) .922 (.	954) .9 <mark>17</mark>
	Baselin	e (Logistic Regression)	(.927) .947	(.891) .7	/19

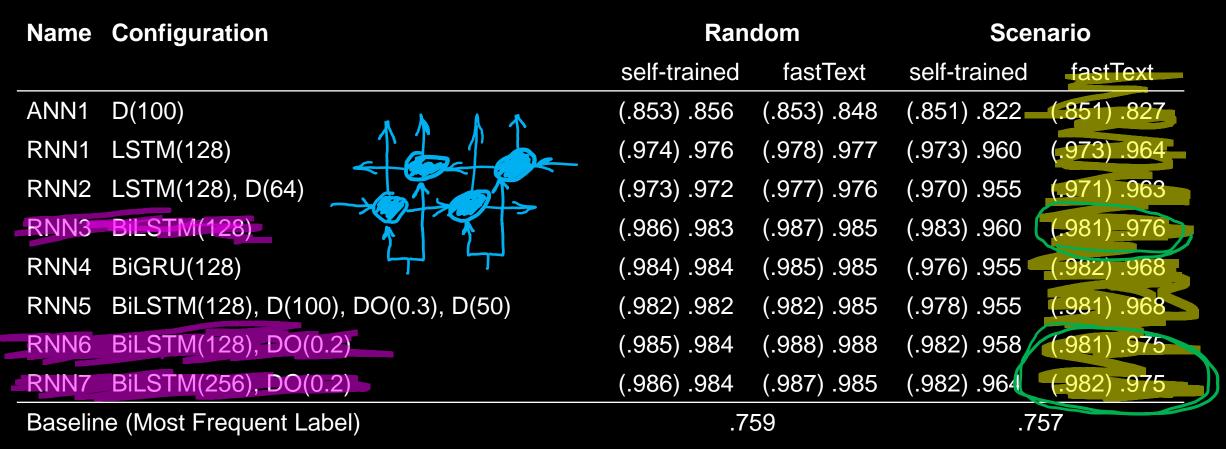
• promising results (> .93 accuracy) for both data splits

• best: CNN1 (random split) and RNN2 (scenario split)

Approach – Second-Level Classification: Overview



Approach – Second Level Classification (2)



- very promising results (> .97 accuracy) on scenario split with fastText (most realistic setting)
- best: "any" BiLSTM

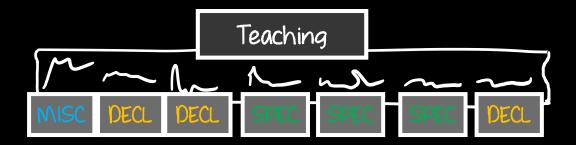
Approach – Adaptations

Dverruling

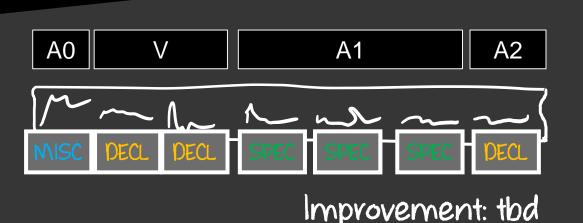
Approach:

- set separating value of 1st-level classifier to .1 1.
- apply 2nd-level classification to all instances 2.
- 1st-level: [0.01,0.1) && 2nd-level: two DECL 3.

→ TEACHING

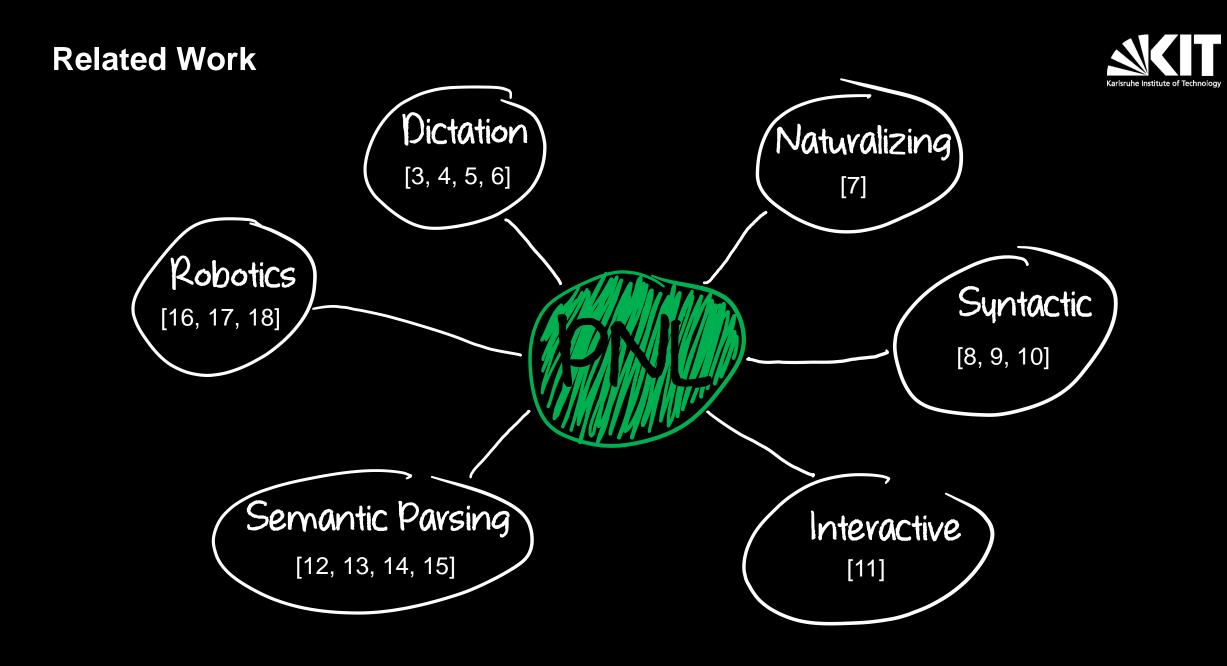


Improvement: .8%



Approach:

- apply a semantic role labeler (SRL) 1.
- smooth 2nd-level classification (align to roles) 2.
- 3. majority decision!



Conclusion

<u>Objective</u>: Classification of natural language teaching efforts

Approach: Hierarchical Classification

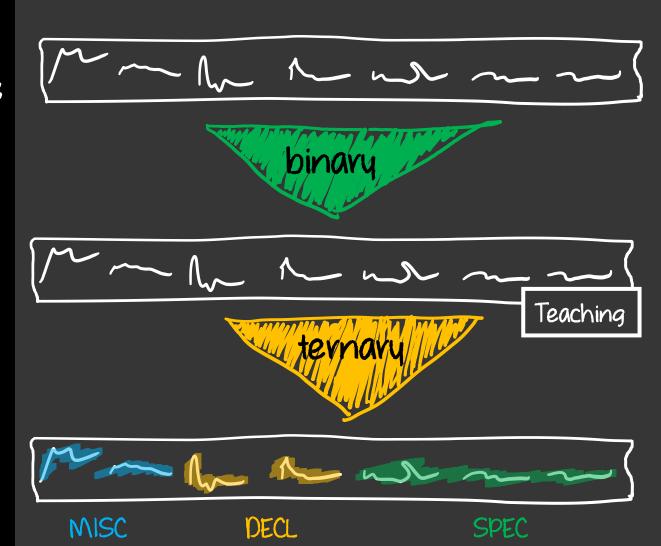
- 1. teaching intent
- 2. semantic structure

Results: Best classifier accuracies

- 1st-level BiGRU: .932
- 2nd-level BiLSTM: .976

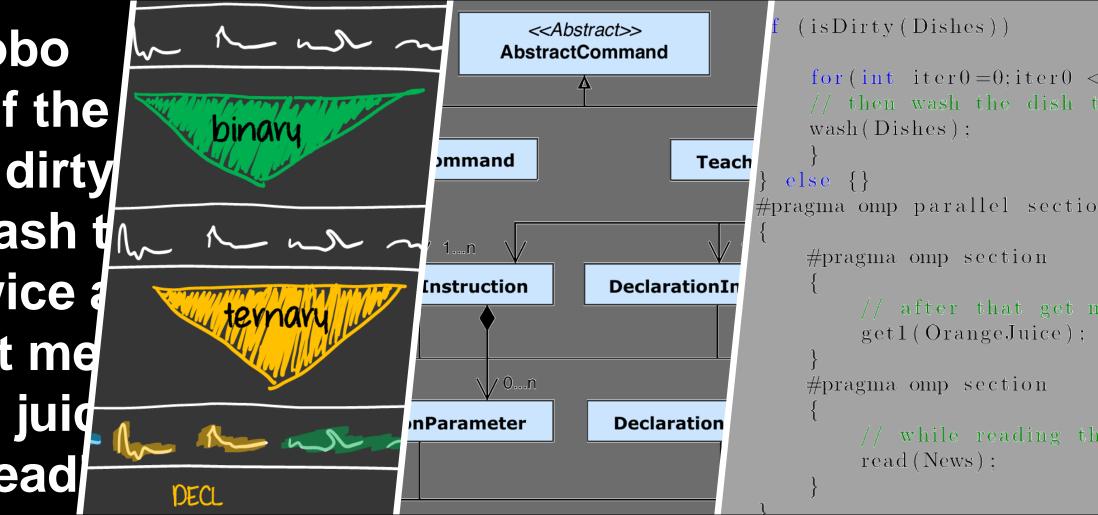
Adaptations: Heuristics

- Overruling: 2nd classifier may overrule 1st
- Smoothing: align 2nd-level labels with SRL tags



Future Work – A Short Teaser

"hey robo check if the dish is dirty then wash t dish twice that get me orange juid while read



References (1)

- [1] S. Weigelt, V. Steurer, and W. F. Tichy, "At Your Command! An Empirical Study on How Laypersons Teach Robots New Functions," Submitted to 2020 IEEE 14th International Conference on Semantic Computing (ICSC) Resource Track.
- [2] R. Mihalcea, "Using Wikipedia for Automatic Word Sense Disambiguation," in Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference. Rochester, New York: Association for Computational Linguistics, Apr. 2007, pp. 196–203.
- [3] D. Price, E. Riloff, J. Zachary, and B. Harvey, "NaturalJava: A Natural Language Interface for Programming in Java," in Proceedings of the 5th International Conference on Intelligent User Interfaces, ser. IUI '00. New Orleans, Louisiana, USA: ACM, 2000, pp. 207–211.
- [4] A. Begel, "Spoken Language Support for Software Development," in 2004 IEEE Symposium on Visual Languages and Human Centric Computing, Sep. 2004, pp. 271–272.
- [5] A. Begel and S. Graham, "Spoken programs," in 2005 IEEE Symposium on Visual Languages and Human-Centric Computing, Sep. 2005, pp. 99–106.
- [6] A. Désilets, D. C. Fox, and S. Norton, "VoiceCode: An Innovative Speech Interface for Programmingby-voice," in CHI '06 Extended Abstracts on Human Factors in Computing Systems, ser. CHI EA '06. New York, NY, USA: ACM, 2006, pp. 239–242.

References (2)

- [7] S. I. Wang, S. Ginn, P. Liang, and C. D. Manning, "Naturalizing a Programming Language via Interactive Learning," in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Jul. 2017, pp. 929–938.
- [8] H. Liu and H. Lieberman, "Metafor: Visualizing Stories as Code," in IUI '05: Proceedings of the 10th International Conference on Intelligent User Interfaces. ACM, 2005, pp. 305–307.
- [9] R. Mihalcea, H. Liu, and H. Lieberman, "NLP (Natural Language Processing) for NLP (Natural Language Programming)," in Proceedings of the 7th International Conference on Computational Linguistics and Intelligent Text Processing, ser. CICLing'06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 319–330.
- [10] M. Landhäußer, S. Weigelt, and W. F. Tichy, "NLCI: A Natural Language Command Interpreter," Automated Software Engineering, vol. 24, no. 4, pp. 839–861, Dec. 2017.
- [11] V. Le, S. Gulwani, and Z. Su, "SmartSynth: Synthesizing smartphone automation scripts from natural language," in Proceeding of the 11th Annual International Conference on Mobile Systems, Applications, and Services - MobiSys '13. Taipei, Taiwan: ACM Press, 2013, p. 193.

References (3)

- [12] K. Guu, P. Pasupat, E. Liu, and P. Liang, "From Language to Programs: Bridging Reinforcement Learning and Maximum Marginal Likelihood," in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Vancouver, Canada: Association for Computational Linguistics, Jul. 2017, pp. 1051–1062.
- [13] M. Rabinovich, M. Stern, and D. Klein, "Abstract Syntax Networks for Code Generation and Semantic Parsing," in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017, pp. 1139–1149.
- [14] B. Chen, L. Sun, and X. Han, "Sequence-to-Action: End-to-End Semantic Graph Generation for Semantic Parsing," in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association for Computational Linguistics, Jul. 2018, pp. 766–777.
- [15] L. Dong and M. Lapata, "Coarse-to-Fine Decoding for Neural Semantic Parsing," in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association for Computational Linguistics, Jul. 2018, pp. 731–742.
- [16] N. K. Lincoln and S. M. Veres, "Natural Language Programming of Complex Robotic BDI Agents," Journal of Intelligent & Robotic Systems, vol. 71, no. 2, pp. 211–230, Sep. 2012.

References (4)

- [17] L. She, Y. Cheng, J. Y. Chai, Y. Jia, S. Yang, and N. Xi, "Teaching Robots New Actions through Natural Language Instructions," in The 23rd IEEE International Symposium on Robot and Human Interactive Communication. Edinburgh, UK: IEEE, Aug. 2014, pp. 868–873.
- [18] I. Markievicz, M. Tamosiunaite, D. Vitkute-Adzgauskiene, J. Kapociute-Dzikiene, R. Valteryte, and T. Krilavicius, "Reading Comprehension of Natural Language Instructions by Robots," in Beyond Databases, Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation. Springer, May 2017, pp. 288–301.

Appendix – NN Configurations

types	architectures	additional layers	number of units	epochs	batch sizes	dropout values	learning rates
ANN		Flatten (Flat),	10, 20, 32, 40,	binary:	binary: 50,	0.1, 0.2, 0.3	0.001,
		Global max pooling 1D (GMax),	50, 64, 100,	300,	100, 300,		0.0005
AININ		Dense (D),	128, 150, 250	500,	400		
		Dropout(DO)	256, 512	1000			
		Max pooling 1D (Max),					
CNN		Global max pooling 1D (GMax),		ternary:	ternary: 32,		
CININ		Dense (D),		50, 100	64, 100,		
		Dropout(DO)		300	256, 300		
	LSTM	Dense (D),					
RNN	GRU	Dropout (DO)					
	BiLSTM						
	BiGRU						