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Current systems with spoken language interfaces do not leverage contextual information.
Therefore, they struggle with understanding speakers’ intentions. We propose a system

that creates a context model from user utterances to overcome this lack of information.

It comprises eight types of contextual information organized in three layers: individual,
conceptual, and hierarchical. We have implemented our approach as a part of the project

PARSE. It aims at enabling laypersons to construct simple programs by dialog. Our im-

plementation incrementally generates context including occurring entities and actions
as well as their conceptualizations, state transitions, and other types of contextual in-

formation. Its analyses are knowledge- or rule-based (depending on the context type),
but we make use of many well-known probabilistic NLP techniques. In a user study we

have shown the feasibility of our approach, achieving F1 scores from 72% up to 98% de-

pending on the type of contextual information. The context model enables us to resolve
complex identity relations. However, quantifying this effect is subject to future work.

Likewise, we plan to investigate whether our context model is useful for other language

understanding tasks, e.g., anaphora resolution, topic analysis, or correction of automatic
speech recognition errors.
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1. Introduction

The last decades have seen a growing interest in Spoken Language Interfaces (SLIs).

The rise of intelligent assistants such as Siri, GoogleNow, and Cortana established

SLIs in daily life [1]. One can easily book a restaurant, schedule a meeting, or make

out whether one needs an umbrella by talking to a smart phone. However, such sys-

tems struggle with long utterances and complex relations. They are not always able

to understand the speaker’s intention. Humans naturally leverage information that

embed the utterance into its context. Contextual information include statements

expressed by the chosen words themselves as well as information related to the un-

derlying concepts and the setting of the conversation. Humans exploit their general

knowledge about grammar, concepts that exist in the world, and their perception to

1
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create an inner model that comprises several forms of contextual information. With-

out these, a set of instructions, such as “Close the fridge [...] Open the dishwasher

[...] Then close all open appliances,” could not be interpreted correctly. Current

approaches cannot infer that the dishwasher should be closed because they are not

able to answer the following questions: Apparently, ‘all appliances’ is a group of ob-

jects, but which objects are appliances? What does ‘open’ mean and which objects

can be open? What can be inferred from the actions ‘open’ and ‘close’ in regard to

the state of objects?

We propose a system that infers the required contextual information from the

utterance automatically. First, we define eight types of context, organized in three

layers of increasing abstraction. Then, we implement multiple techniques to generate

a context model from spoken utterances: Our approach uses NLP techniques to

cope with contextual information that can be extracted from the actual wording.

We integrate knowledge databases, such as WordNet [2], to find relations between

entities in an utterance. In addition, we use a domain model to extract contextual

information concerning the environment of the conversation. Finally, our system

infers further information by combining the different sources. This context model

enables us to resolve complex relations as in the above example. We will discuss use

cases in Section 7.

2. Related Work

Most spoken language interfaces do not incorporate explicit contextual informa-

tion. However, many approaches model and use contextual information implicitly.

Systems based on recurrent neural networks make use of the architecture of such

networks [3]. Since ‘old’ information is constantly fed back into the network, cur-

rent decisions are based on previous to some extent. Similarly, partially-observable

markov decision process approaches model a kind of implicit contextual information

in their belief systems [4]. Implicit context is also utilized by some knowledge-based

systems. Active ontologies retain the information of previous activations in the

network and are therefore able to use this information to interpret the current ut-

terance [5]. Implicit knowledge is only accessible in the specific task and can neither

be shared among different tasks nor addressed directly. Furthermore its impact is

hard to quantify and evaluate.

Explicit contextual information is used by some approaches in natural language

processing in robotics: The approach by Misra et al. uses situational contextual

information to validate candidates for action grounding [6]. Fleischmann and Roy

use the lexical context of actions to improve their approach to learn a mapping

between spoken utterances and actions [7]. Another application is depicted by the

approach of Bordes et al., which uses the identified concepts of preceding expressions

to improve the language grounding of the current expression [8]. They all have in

common that the contextual information primarily depicts the environment of the

utterance. In contrast, we define a comprehensive context model that not only
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Table 1. Overview of Context Layers and Types

Layer Type Description

Individual

Entity occurring things that can exist

Spatial Deixis spatial relations between entities

Action events occurring in context

State Transition state changes induced by actions

Conceptual
Concept abstraction of entities and actions

State states individuals can be in

Hierarchical
Super Concept hypernym relations between concepts

Part-Of Relation meronym relations between concepts

considers the environment but also the utterances itself, the expressed concepts

and relations between them.

3. Context Model

The term context has several definitions [9, 10, 11]. Most definitions share the notion

that context describes information that is used to understand the meaning of an

artifact. The artifacts are parts of a communication situation, i.e., spoken utter-

ances. The context of these artifacts includes information about the setting of the

utterance, such as the place, time, the relation between the communicating partners

and their mutual knowledge assumptions. In addition, afore-stated expressions in

an utterance form a setting for the statement.

Since our approach is based on artifacts of spoken language, it is necessary to an-

alyze which contextual information is retrievable from this limited input. The input

consists of spoken utterances provided in a discourse. Sentences contain informa-

tion about actions performed by subjects and treated objects. Additional expres-

sions form relations between them, including spatial, temporal, or conditional. The

subjects, objects, and actions are instances of concepts. For example, the utterance

“The fridge is running,” refers to the concepts refrigerator and run operate (in

contrast to run move). In an utterance, many entities belong to the same concept.

Similarly, many of the concepts are specializations of the same (or closely related)

super concepts. Hence, concepts of instances from the utterance form a hierarchy

of concepts. For instance the concepts refrigerator and dishwasher are manifes-

tations of the super concept white goods.

Based on these observations, we define three layers of contextual information

that are extractable from spoken utterances: First the Individual Layer that deals

with instances and the relations among them. Second, the Conceptual Layer that

describes the concepts the instances form. And third, the Hierarchical Layer which

considers generalizations of concepts. The layers constitute incremental layers of

abstraction from the input. Table 1 summarizes the context layers as well as the

types. We will discuss the layers and types in detail in the upcoming sections.
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3.1. Individual Layer

The first layer of context describes the actual course of events. It concerns the ac-

tions, entities, etc. that occur in the spoken utterance. We define subjects and

objects as acting and treated things and call this type entity. Taking this as

a basis we augment relations between the entities: Locative relations, such as

cup:is located on:table in the utterance “the cup on the table,” are often used

in spoken language. We denote this type of context as spatial deixis. Predicates

determine the relation of entities. If a predicate expresses an action we call this

information context of type action. For example, in “John, go to the table,” the

action is go(who:John, where:table). The formalization of actions enables us to

track which actions have been stated and which entities were affected by these. In

some cases actions implicate a change of state of the treated entities; we call this

kind of context state transition. For example, in the utterance “Open the fridge,”

the state of the entity fridge changes to open. State transitions provide valuable

information to examine whether the utterance contains a valid sequence of actions.

As we only consider spoken language, we have no information about the initial state

of the entities. Thus the state transitions are the only way to obtain an image of

the states the entities are in at distinct points in time.

3.2. Conceptual Layer

The Conceptual Layer contains the abstract concepts of entities, actions, and state

transitions. To understand an utterance, humans shape concepts by leveraging the

knowledge they have learned about the world and things that exist. This knowledge

encompasses information about the entities and actions humans normally learn

during their life, such as different meanings and synonyms of a word or relations

between objects, e.g., that ‘refrigerator’ and ‘fridge’ refer to the same concept. Thus,

we consider concepts as another context type. Note that whenever the same entity

or action occur multiple times in utterances they shall refer to the same concept.

Additionally, we define context of the type state as abstraction of state transitions:

States are related to concepts, while state transitions are caused by actions. Thus,

we see states as part of the Conceptual Layer rather than the Individual Layer. Note

that different concepts can share the same state on the Conceptual Layer. E.g., the

concepts refrigerator and microwave oven might share the state open.

3.3. Hierarchical Layer

The Hierarchical Layer depicts super-conceptual and part-of relations of concepts.

Humans do not stop the process of ‘context shaping’ with the concepts directly

instanced in the utterance. In fact they use their knowledge to relate the con-

cepts to each other. This happens in two ways. First, humans form superordinated

concepts to perceive connections between concepts. We consider these relations as

another context type named super concept. E.g. concepts such as refrigerator and
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Fig. 1. Architecture of PARSE

dishwasher share the super concept white goods and therefore are concept-wise

closely related to each other. Second, humans determine whether a concept depicts

a part of another concept. We address this kind of relation with the context type

part-of relation. E.g., in the utterance “Go to the fridge and open its door,” the

concept door is a part of the concept refrigerator.

4. PARSE

Our work on context model acquisition from spoken utterances is part of the project

PARSE [12]. The goal of the project is to enable laypersons to program in plain

spoken English. Typical application areas of PARSE are robotics, home automa-

tion systems, and alike. To facilitate programming with spoken language the system

must understand the user’s intention. Thus, PARSE is actually a system for Spo-

ken Language Understanding (SLU) [13]. To achieve deep SLU PARSE takes the

approach of independent agents. Every agent is responsible for a certain SLU task.

As SLU tasks are generally interdependent all agents work in parallel and therefore

might benefit from results of each other. The strict separation of concerns addi-

tionally enables us to either build an agent knowledge-based or probabilistically

according to the SLU task at hand and evaluate it intrinsically. The architecture of

PARSE, which is illustrated in Figure 1, is separated in three independent parts:

A pipeline for preprocessing, an agent-based main execution, and a pipeline for

postprocessing. A graph serves as shared data structure for the agents. The pre-

processing pipeline is meant for common natural language processing tasks, e.g.,

automatic speech recognition, shallow parsing, and named entity recognition. The

user utterance is processed sequentially here; finally a basic graph for the main ex-

ecution is built. The main execution is responsible for SLU. Agents for deep SLU

transform the graph to publish their results. Hereby, a semantic representation of

the input is created incrementally. SLU tasks encompass detection of actions, loops

and conditions, context, topic and coreference analysis, etc. If the graph cannot be
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Table 2. Domain Ontology Structure

Class Description

System Systems and sub-systems, i.e. API classes

Method System functions, i.e. API methods

Parameter Parameter names used by the system

Data Type Data Types used by the system

Value Value enumerations and ranges of data type values

Object External objects, e.g., a fridge or a cup

State States of the external objects, e.g., opened and closed

transformed to a proper intention model, the utterance is likely to be incomplete or

ambiguous. In such situations the user is queried for clarification. The postprocess-

ing pipeline maps the user’s intention – modeled in the graph – to functions of the

target system. Target systems are modeled in ontologies as proposed in our previ-

ous project NLCI [14]. We define a class hierarchy suitable for all target systems as

shown in Table 2. In [14] we have shown, that domain ontologies can be extracted

semi-automatically from most APIs for end-user programming with small effort.

5. Context Acquisition

To generate the representation of contextual information described in Section 3

we use an incremental approach to construct the layers. We have implemented the

context acquisition as an agent for PARSE. Thus, we can draw from information

created by the preprocessing pipeline. This information includes parts of speech,

lemmata, chunks, named entities, and semantic roles.

We start our analysis on the Individual Layer, the layer with the lowest degree

of abstraction: We identify the described entities by analyzing the noun phrases.

Additionally, we use a rule-based approach on parts of speech and chunks to add in-

formation such as the grammatical number, adjectives, quantifiers, and determiners.

After extracting the entities we are able to search for spatial deixes describing rela-

tions between the identified entities. We accomplish this task by keyword matching

on the expressions between the identified entities. This approach is reasonable, since

in English grammar locative relations are usually expressed by prepositional phrases

between nominal phrases they relate [15]. Finally, we extract the actions expressed

in the utterance. To identify actions we combine a rule-based analysis of verb phrases

with the information we get from the semantic role labeler SENNA [16] included

in the preprocessing pipeline. Furthermore, we translate arguments of predicates to

thematic roles from VerbNet [17] to relate actions and treated entities.

With the instances present, we are now able to infer the concepts and states

on the Conceptual Layer. To generate concepts we first try to match entities with

individuals from our domain ontology. We use the Jaro-Winkler distance [18] with a

threshold of 0.92 and synonyms from WordNet to allow fuzzy matching. The thresh-
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old was determined empirically. If no proper match is found for an entity we query

WordNet: First we use the full phrase that represents the entity. If unsuccessful we

query WordNet again with sub-phrases of decreasing length (the head of the phrase

is always included). The first match forms the concept. If there is no WordNet entry

that matches the (sub-)phrase, no concept is created. For the following entities we

first try to match the head of the phrase with an existing concept. Again we use the

Jaro-Winkler distance and synonyms. If a matching concept is found we link the

entity to the concept and proceed with the next entity. Otherwise the previously

described generation process is invoked. For all concepts we additionally retrieve

synonyms from WordNet. This approach results in associating different entities,

such as white fridge and small fridge, to the same concept refrigerator. For

all created concepts we retrieve their possible states from the domain ontology and

relate them to the concept. Then we examine whether the actions in the utterance

cause any state transitions. We obtain this information from the domain ontology:

E.g., the ontology contains the fact that the action open causes the state closed to

change to open. For all state-changing actions we analyze the treated entities: We

verify whether the entity’s concept can be in this state. If so, we link the state to

the entity. We allocate the same state to all following entities of the same concept

until another state-changing action occurs. Then the analysis starts anew.

With the concepts at hand, we are able to form relations on the Hierarchical

Layer. First, we use WordNet to build up a hierarchy of concepts: Apparently, the

lowest common subsumer (LCS) of a pair of concepts in WordNet’s hyperym hier-

archy is a good candidate for a super concept. However, this naive approach would

lead to many imprecise super concepts, such as artifact or entity. Therefore, we

use the similarity metric defined by Wu & Palmer [19] with a threshold of 0.7 and a

depth filter to avoid terms that are too generic. If one of the considered concepts is

a hypernym of the other, the second becomes the super concept of the first. The hi-

erarchy can be extended further: The created super concept can be used to find new

super concepts. For example, if in the first iteration the super concepts white goods

and kitchen appliance are created, the next iteration produces the super concept

home appliance. Second, we generate part-of relations: Some of these are included

in our domain model and can be retrieved directly. If the ontology yields no infor-

mation, we use meronyms from WordNet. These are solely used to create part-of

relations among existing concepts to avoid false positives. However, parts retrieved

from the domain ontology are added to the context model even if they had no con-

cept representation before. The final context model consists of three layers with five

context types denoted as nodes (entity, action, concept, super concept, and state)

and three denoted as edges (spatial deixis, state transition, and part-of relation).

Figure 2 shows an extract of the context model for the exemplary utterance “Robo,

turn on the small oven between the oven and the fridge.”
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Robo, t urn on t he small oven between the oven and t he fridge

home_ appliance
Super Concept

on
State

Robo
Ent ity

fr idge
Ent ity

small oven
Ent ity

oven
Ent ity

t urn on
Act ion

Agent T heme between

robot
Concept

refrigerator
Concept

t urn_ on
Concept

oven_ door
Concept

part

off
State

in_ State

t ransit ions_ to

oven
Concept

possible_ State

between

Fig. 2. Extract of the context model for an exemplary utterance.

6. Evaluation

To evaluate our approach to context acquisition we conducted a user study with 10

participants. We let all subjects describe tasks for a robot in two scenarios. We took

recordings, transcribed them and provided a gold standard per context type. For

each context type we calculate precision, recall and the F1 score. In the upcoming

subsections we first show the layout and implementation of our study, afterwards

we discuss the results.

6.1. Experimental Design

Our user study comprises two scenarios containing a household robot in a kitchen

setting. In both scenarios the robot should fulfill a certain task; in the first scenario

it should fill a cup with water from the fridge, bring it to the user and afterwards

put cups from the dishwasher into the cupboard. In the second scenario the robot

is supposed to prepare an instant meal that is located in the fridge by putting it on

a plate from the dishwasher and heat it in the microwave. Subjects are encouraged

to describe the steps to accomplish the task to the robot. The instructions the

participants received contained no concrete wording, just a high level description of

the tasks and figures that showed the setting. We took continuous recordings, one

per subject and scenario.

Ten subjects participated in the study, four female and six male. Nine were grad

students from different departments and one was a computer science PhD student.

All were native German speaker. However, all but one assessed their own English

skills to be at least ‘experienced’ (CEF level C1). All participants gave descriptions

for both scenarios. One participant repeated the recording for the second scenario

because of an omission. Therefore we ended up with 21 recordings. As the subjects

were able to describe the task as they liked, we received quite different recordings:

They vary in length from 15 seconds up to 80 seconds and in instructions for the
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Table 3. Evaluation: Data Overview

Scenario 1 Scenario 2 Total

Recordings 10 11 21

Words 734 811 1545

Phrases 467 543 1010

Instructions 121 143 264

Entities 199 233 432

Spatial Deixes 41 43 84

Actions 120 154 274

State Transitions 33 48 81

Concepts 274 320 594

States (Connections) 8 (306) 10 (338) 18 (644)

Super Concepts 88 56 144

Part-Of Relations 35 43 78

robot from a minimal set of 5 up to 22.

We transcribed all recordings according to the guideline by Kiesling et al. [20]

and prepared a gold standard for each context type. We annotate the solutions as

per-phrase labels. Thus, a phrase can have none, one, or more labels (depending

on how many types of context it depicts). Annotating entities, actions and spatial

deixes is straight forward. The gold standard for actions includes its argument

relations. Thus, we can evaluate not only if the expected action is present but also

whether all entities are identified correctly. We annotate states induced by the state

transitions at the treated entities. This approach enables us to evaluate not only the

state transitions but also the state inference mechanism: A recurring state annotated

at different instances of an entity indicates that no state transition was identified.

The expected states are those defined in the domain ontology. To assess the state

generation on the Conceptual Layer we distinguish states and state connections:

‘States’ refers to the created states in the resp. scenario and ‘state connections’ to

the created relations to concepts. We annotate concepts and super concepts as well

as the possible states of the concepts at all phrases that can cause them. Hence, our

evaluation is insensitive to consequential errors. Part-of relations are annotated at

the phrase describing the part. As ground truth for the part-of relations we used

the relations present in our domain ontology and meronyms from WordNet. For our

scenarios, only a few relevant meronym relations can be found in WordNet. Thus,

the majority of expected part-of relations are based on our domain ontology. Table 3

summarizes the recordings’ meta data and shows the number of expected instances

per context type. To retrieve the results of our agent we first run the preprocessing

pipeline of PARSE. Afterwards we run our agent multiple times – until no further

changes can be observed – without interference of other agents.
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Table 4. Evaluation: Results by Context Type

Context Type Precision Recall F1

Entity 0.972 0.975 0.973

Spatial Deixis 0.945 0.793 0.862

Action 0.852 0.762 0.804

State Transition 0.854 0.627 0.723

Concept 0.986 0.974 0.981

State 1.000 0.955 0.977

Super Concept 0.680 0.932 0.786

Part-Of Relation 0.897 0.959 0.927

6.2. Results

To assess the soundness of our approach we calculate precision, recall and the

F1 score. Table 4 summarizes the results of our evaluation. The results are promis-

ing. However, when we use more complex – and therefore error-prone – heuristics

to generate context types the results diminish. Additionally, we generate results

incrementally. Thus, failures occurring in the lower abstraction levels (or during

preprocessing), such as incorrect entities or actions, cause failures in the higher lev-

els. E.g., if a verb ‘open’ is falsely labeled as an adjective by the part-of-speech tagger

this results in a missing action, a falsely identified entity (having open as describing

adjective), and also causing a state transition expected not to be present because

there is no action that triggers it. This kind of failure is propagated even further:

Since we evaluate state transitions by examining the states of all occurrences of

the same entity, a missing state transition results potentially in multiple incorrect

‘current states’ and therefore in false state transitions. Hence, the low recall of the

context type state transition can partly be explained by aftereffects of the action

analyses. Since the generation of actions is primarily based on the semantic role

labeler SENNA, we expected to achieve F1 scores around 75%a. Because our input

examples are less complex than those from the CoNLL-2005 shared task, the gen-

eration of actions performs even better. However, our additional verb-phrase-based

heuristic further improves recall by 5%. Nonetheless, missing or falsely created ac-

tions are unpleasant because they influence other context types. The relatively low

recall of spatial deixes is caused by unexpected choice of words: The subjects used

diverse phrases to express locative relations, some of which our approach is not capa-

ble to solve. For example, nested prepositional phrases, such as “put the meal from

the fridge on the plate,” may cause the locative relation to be ambiguous. This kind

of ambiguity cannot easily be addressed by a keyword matching approach. We will

investigate whether probabilistic methods are more suitable for such expressions.

The generation of concepts from entities as well as the connection to the possible

aSENNA achieves an F1 score of 75,49% in the CoNLL shared task [16].
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states is highly accurate; false positives and negatives result from failures in the

preprocessing pipeline. Part-of relations are generated accurately; false positives

are due to the use of WordNet: Since we do not resolve word ambiguities, we use all

WordNet senses to find part-of relations. Sometimes this procedure causes failures,

such as plate being a part of table instead of dish. The result of the evaluation of

super concepts shows that our approach is focused on recall rather than precision.

This objective is reasonable because we want to explore new context information

and make it available to other language analyses. Wrong information can later be

ignored, but information that is never generated remains unused forever. As with

part-of relations, missing disambiguation of WordNet senses of the concepts is the

reason of most of the false positives.

In summary our approach produces highly valuable results for the context types

entity, spatial deixis, concept, state, and part-of relation. For the context types

action and state transition an improved approach to semantic role labeling, i.e.,

adjusted to spoken utterances, would yield significantly better results. However,

the evaluation shows that the current approach adds valuable context information

anyway. The result of the context type super concept indicates that the approach

is feasible but depends on correct WordNet senses.

7. Use Cases

Our comprehensive context model is useful for resolving complex relations in spoken

utterances. In this section we will show exemplary how we use the model in certain

situations. For brevity we focus on identity relations.

First, we consider the sample utterance “Open the cupboard. Take the cup and

close it.” A naive approach would relate ‘it’ and ‘the cup’. However, from the context

model we know, that the cupboard is open and can be closed, but a cup cannot.

Therefore we can infer that ‘it’ more likely refers to ‘the cupboard’.

The second example is, “There is a tumbler on the table. Take the glass and

bring it to me.” Here, the challenge is to understand that the expression ‘the glass’

is a generalization of the ‘tumbler’. Since ‘tumbler’ and ‘glass’ are not synonymous,

a simple WordNet query does not help. Neither a hypernym look-up in WordNet is

helpful, as one cannot easily decide whether a hypernym is meaningful. Our model

yields the information that glass is an appropriate super concept of tumbler and

thus can be used as a substitute.

In the third example, “To prepare meringue take egg white, powdered sugar,

and lemon extract. Put all the ingredients into the bowl,” ‘ingredients’ refers to a

group of previously mentioned entities. Our context model provides the information

that egg white, powdered sugar, and lemon extract share the super concept

ingredient. Together with the quantifier we are able to infer that ‘all ingredients’

refers to ‘egg white’, ‘powdered sugar’, and ‘lemon extract’.

The last example, “Close the fridge [...] Open the dishwasher [...] Then close all

open appliances,” contains multiple challenges: First, one must resolve which are
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the ‘appliances’. According to our context model fridge and the dishwasher share

the super concept appliance. Second, the context model comprises the information

that the fridge is closed and the dishwasher is open at the time ‘all open appliances’

is mentioned. Thus, we can infer that ‘all open appliances’ refers to the dishwasher.

8. Conclusion and Future Work

Acquiring a context model of spoken utterances is essential for understanding the

speaker’s intention. Without such information a spoken language interface could

never fully interpret the relations in complex expressions. We have presented a new

approach to generating a comprehensive context model from spoken utterances.

Our approach generates eight context types, e.g., occurring entities and actions,

the concepts of which they are instances, and relations between these as super and

part concepts. The context types are organized in three layers representing different

levels of abstraction.

The evaluation showed that the approach is promising: We achieve F1 scores

from 72% up to 98%, depending on the context type. However, the scores might be

improved in several ways: Our generation of (super) concepts and part-of relations

depends on the correct selection of the WordNet sense for a concept. Therefore, a

comprehensive word sense disambiguation would improve our results. Moreover, our

approach would benefit from a semantic role labeler adapted to spoken utterances.

Since the semantic role labeler used by us is trained on textual input, it struggles

with ungrammatical phrases common in spoken utterances. Consequentially, our

generation of actions contains false positives. These are propagated to other context

analyses, e.g., state transition.

However, the evaluation shows that the current approach adds valuable context

information. We have shown that our context model can be used to resolve complex

identity relations. The next step is to quantify this effect and extend this approach

to coreference resolution in general.

Future work will focus on exploring further areas of application for our con-

text model: We expect it to be useful for tasks such as topic extraction, time line

analysis, correction of automatic speech recognition errors, and even word sense dis-

ambiguation. A partial context model might support word sense disambiguation,

which in turn improves the context model.
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